The role of dopamine in a model of trigeminovascular nociception.

نویسندگان

  • S Akerman
  • P J Goadsby
چکیده

Migraine is a common, disabling problem with three phases: premonitory, main headache attack, and postdrome. The headache phase is thought to involve activation of trigeminal neurons, whereas the premonitory and postdrome phases may involve dopaminergic mechanisms. In animal studies, dopamine has been found to cause vasodilation of cranial arteries at very low doses. Using intravital microscopy, we examined the effect of dopamine receptor agonists on dural blood vessel caliber and the effect of dopamine and specific dopamine receptor antagonists on trigeminovascular neurogenic dural vasodilation. Dopamine hydrochloride caused a significant vasoconstriction (P < 0.05) and increase in arterial blood pressure (P < 0.05) that was reversed by a alpha2-adrenoceptor antagonist, yohimbine, rather than specific dopamine receptor antagonists. The D1 receptor agonist caused a vasoconstriction (P < 0.05) and a blood pressure increase (P < 0.05), which was reversed by yohimbine and therefore alpha2-adrenoceptor-mediated. None of the specific dopamine receptor antagonists were able to attenuate neurogenic dural vasodilation. Dopamine hydrochloride infusion (P < 0.05) and a D1 receptor agonist were able to attenuate the vasodilation (P < 0.05), with maximal dilation returning after cessation of the dopamine agonist infusion. This response may be due to the vasoconstrictor effects of the alpha2-adrenoceptor and an action at the D1 receptor. In the intravital model of trigeminal activation, it seems that dopamine receptors do not play a major role and may not present an acute treatment option. Our data do not exclude a role for dopamine receptor modulators in short- or long-term prevention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of imidazoline compounds on nociception in animal pain model

The discovery of imidazoline ligands has opened up a new field of study. The investigation of imidazoline actions independent of adrenoceptors started in the mid 1980s. Imidazoline receptors are classified in several subtypes, I1, I2 and I3 binding sites. Although imidazoline sites have been the subjects of research for several years, but there is still controversy about their actions especiall...

متن کامل

The effects of imidazoline compounds on nociception in animal pain model

The discovery of imidazoline ligands has opened up a new field of study. The investigation of imidazoline actions independent of adrenoceptors started in the mid 1980s. Imidazoline receptors are classified in several subtypes, I1, I2 and I3 binding sites. Although imidazoline sites have been the subjects of research for several years, but there is still controversy about their actions especiall...

متن کامل

Angiotensin II type 1 receptor blocker losartan attenuates locomotor, anxiety-like behavior and passive avoidance learning deficits in a sub-chronic stress model

Objective(s): Stress alters sensory and cognitive function in humans and animals. Angiotensin (AT) receptors have demonstrated well-established interactions in sets of physiological phenomena. AT1 receptors can play a part in stress-induced activation of hypothalamic-pituitary-adrenal (HPA) axis; besides angiotensinergic neurotransmission plays a pivotal role in stress-evoked physiological resp...

متن کامل

Lateral hypothalamus chemical stimulation-induced antinociception was attenuated by injection of dopamine D1 and D2 receptor antagonists in the ventral tegmental area

Introduction: Stimulation or inactivation of the lateral hypothalamus (LH) produces antinociception. Studies showed a role for the ventral tegmental area (VTA) in the antinociception induced by LH chemical stimulation through the orexinergic receptors. In this study, we assessed the role of intra-VTA dopamine D1 and D2 receptors in antinociceptive effects of cholinergic agonist, carbachol, m...

متن کامل

Role of the thalamic parafascicular nucleus cholinergic system in the modulation of acute corneal nociception in rats

The present study investigated the effects of microinjections of acetylcholine (a cholinergic agonist), physostigmine (a cholinesterase inhibitor), atropine (an antagonist of muscarinic cholinergic receptors) and hexamethonium (an antagonist of nicotinic cholinergic receptors) into the parafascicular nucleus of thalamus on the acute corneal nociception in rats. Acute corneal nociception was ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 314 1  شماره 

صفحات  -

تاریخ انتشار 2005